Bem, quanto mais alta a frequência de um sinal, mais rápido sua tensão e corrente estão variando no tempo. Com isso percebemos que quanto mais rápido o sinal, maior oposição o indutor irá apresentar. Tal fenômeno pode ser representado pela expressão (para sinais senoidais):
XL=2×π×f×L
Onde:
XL é a reatância indutiva, em Ohms;
f é a frequência do sinal, em Hertz;
L é a indutância do indutor, em Henrys.
Assim essa expressão nos permite calcular a reatância indutiva quando sabemos a frequência de um sinal e a indutância do indutor pelo qual o sinal passa.
Quando existirem dois indutores em série e quisermos saber a reatância indutiva total, podemos proceder de duas formas. Uma consiste em calcular as reatâncias indutivas separadamente e depois somá-las. A outra forma consiste em somar as indutâncias e depois calcular a reatância indutiva dessa reatância equivalente. Isso pois podemos, ao nos depararmos com indutâncias em série, calcular a indutância equivalente como a soma das indutâncias.
Quando existirem dois indutores em paralelo podemos calcular a indutância equivalente fazendo o inverso da soma dos inversos, que é o mesmo método usado para achar o resistor equivalente na associação paralela. Aqui valem as mesmas regras. Para "n" indutores iguais em paralelo, a indutância equivalente é igual a indutância dos indutores dividido por "n". Para calcular a indutância equivalente de indutores que não são iguais, podemos usar a seguinte expressão:
Leq=11L1+1L2+1L3+...+1Ln
Ou, para apenas dois indutores em paralelo, podemos usar uma expressão simplificada, que é:
Leq=L1×L2L1+L2
Após feito isso, podemos calcular, se quisermos, a reatância indutiva equivalente. Poderíamos também calcular as reatâncias separadamente e associá-las da mesma forma que associaríamos resistores em paralelo, fazendo o inverso da soma dos inversos.
Simples, não? E por hoje era isso. Até a próxima, onde vou falar de circuitos RCL e como associamos impedâncias complexas. Se cuidem, estudem e abraço. Fui...
Nenhum comentário:
Postar um comentário